跳转至

Math1

三角函数

y=\cot{x}

cotx
定义域: x\neq k\pi (k \in \bold{Z})
值域: (-\infty ,+\infty)
求导: \frac{d \cot x}{dx}=-\csc^2(x)
积分: \int \cot x dx = \ln (\sin x) + C

y=\sec x

secx
定义域: x\neq \frac{\pi}{2}+k\pi (k \in \bold{Z})
值域: (-\infty,-1] \cup [1,\infty)
导数: \frac{d\sec x}{dx} = \tan x \sec x
积分:\int \sec dx = \ln |\tan x + \sec x|

y=\csc x

cscx
定义域:x\neq k\pi (k \in \bold{Z}) 值域: (-\infty,-1] \cup [1,\infty)
求导: \frac{d\csc x}{dx}= -\cot x \csc x
积分: \int \csc xdx = -\ln|\csc x- \cot x|+C

y=\arcsin x

arcsin x 定义域:[-1,1]
值域:[-\frac{\pi}{2},\frac{\pi}{2}]
导数:\frac{d\arcsin x}{dx}=\frac{1}{\sqrt{1-x^2}}
积分: \int \arcsin xdx=\sqrt{1-x^2}+x\arcsin x+C

y=\arccos x

arccos x 定义域: [-1,1]
值域: \left[0,\pi \right]
导数:\frac{d \arccos x }{dx}=-\frac{1}{\sqrt{1-x^2}}
积分:\int \arccos xdx=x\arccos x - \sqrt{1-x^2}

y=\arctan x

arctanx
定义域:(-\infty,+\infty)
值域:(-\frac{\pi}{2},+\frac{\pi}{2})
导数:\frac{\arctan x}{dx}=\frac{1}{x^2+1}
积分:\int \arctan x dx = x \arctan x - \frac{1}{2}\ln (x^2+1)

y=arccot x

arccot
定义域:(-\infty,+\infty)
值域:(0,\pi)
导数:\frac{d arccot x}{dx}=-\frac{1}{1+x^2}
积分:\int arccotx dx=\frac{1}{2}\ln(x^2+1)+xarccot(x)+C

等价无穷小

1-\cos x \sim \frac{1}{2}x^2
(1+x)^2 \sim ax
x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x -1

求导

  1. 分解法求高阶导

    f(x)可以分解为f_{1}(x)+f_{2}(x),若知道f_{1}^{(n)}(x)+f_{2}^{(n)}(x),则f^{(n)}(x)=f_{1}^{(n)}(x)+f_{2}^{(n)}(x)

  2. 常用的高阶导

    • (e^{ax+b})^{(n)}=a^n+e^{ax+b}
    • [sin(ax+b)]^{(n)}=a^n sin(ax+b+\frac{n\pi}{2})
    • [cos(ax+b)]^{(n)}=a^n cos(ax+b+\frac{n\pi}{2})
    • [\ln(ax+b)]^{(n)}=(-1)^{n-1} a^n\frac{(n-1)!}{(ax+b)^n}
    • (\frac{1}{ax+b})^{(n)}=(-1)^n a^n\frac{n!}{(ax+b)^{n+1}}

积分

\int \frac{dx}{ax+b} = \frac{1}{a}\ln{|ax+b|}+C
\int\sqrt{ax+b}dx = \frac{2}{3a}\sqrt{(ax+b)^3}+C
\int \frac{t^2}{e^t}dt = t^2e^{-t}+2te^{-t}-2e^{-t}+C
\int \frac{dx}{x \sqrt{ax+b}} = \begin{cases} \frac{1}{\sqrt{b}}\ln \left|\frac{\sqrt{ax+b}-\sqrt{b}}{\sqrt{ax+b}+\sqrt{b}}\right|+C &(b>0)\\ \\ \frac{2}{\sqrt{-b}}\arctan \sqrt{\frac{ax+b}{-b}}+C & (b<0) \end{cases}
\int \frac{dx}{x^2+a^2} = \frac{1}{a}\arctan\frac{x}{a}+C
\int \frac{dx}{x^2-a^2} = \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C
\int \frac{dx}{ax^2+b} = \begin{cases} \frac{1}{\sqrt{ab}}\arctan \sqrt{\frac{a}{b}}x +C \\\\ \frac{1}{2\sqrt{-ab}}\ln \left| \frac{\sqrt{a}x-\sqrt{-b}}{\sqrt{a}x+\sqrt{-b}}\right|+C \end{cases}
\int \frac{dx}{\sqrt{x^2\pm a^2}}=\ln(x+\sqrt{x^2 \pm a^2})+C
\int \frac{x}{\sqrt{x^2+a^2}}dx=\sqrt{x^2+a^2}+C
\int \frac{dx}{\sqrt{a^2-x^2}}=\arcsin\frac{x}{a}+C
\int \sqrt{x^2+a^2}dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\ln(x+\sqrt{x^2+a^2})+C
\int \sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}+\frac{a^2}{2}\ln\left|x+\sqrt{x^2-a^2})\right|+C
\int \sqrt{a^2-x^2}=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin \frac{x}{a}+C

题目

https://zhuanlan.zhihu.com/p/78850527 https://zhuanlan.zhihu.com/p/99890863 https://zhuanlan.zhihu.com/p/260336955 https://zhuanlan.zhihu.com/p/161177678 https://zhuanlan.zhihu.com/p/146742823


评论